
Motor Control Blockset™
User’s Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Motor Control Blockset™ User's Guide
© COPYRIGHT 2020–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2020 Online only New for Version 1.0 (Release 2020a)
September 2020 Online only Revised for Version 1.1 (Release R2020b)
March 2021 Online only Revised for Version 1.2 (Release R2021a)
September 2021 Online only Revised for Version 1.3 (Release R2021b)
March 2022 Online only Revised for Version 1.4 (Release R2022a)
September 2022 Online only Revised for Version 1.5 (Release R2022b)
March 2023 Online only Revised for Version 2.0 (Release R2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Design the Controller
1

Design Field-Oriented Control Algorithm . 1-2

Design Current and Position Scaling Subsystems 1-3

Design Current Controller Subsystem . 1-6

Perform Manual Gain-Tuning of Current Controller 1-10

Design Speed Control Algorithm . 1-12

Perform Manual Gain-Tuning of Speed Controller 1-14

PMSM Drive Characteristics and Constraint Curves 1-15

Deploy and Validate System
2

Prepare Target Hardware . 2-2
Verify Direction of Rotation of Motor . 2-2
Calibrate Current Sensor . 2-2
Calibrate Position Sensor . 2-3

Add Hardware Drivers to Simulation Model and Deploy to Target
Hardware . 2-4

Task Scheduling in Target Hardware . 2-6

Adding ADC Driver Library Block . 2-8

Adding Quadrature Encoder Driver Block . 2-11

Add PWM Driver Block . 2-14

Add Hardware Interrupt Trigger Block for Current Control Loop 2-18

Run in Open-Loop and Switch to Closed-Loop . 2-19

Model Configuration and Hardware Deployment 2-23

iii

Contents

Validate System . 2-25
Calculate Physical Motor Load in Target Hardware 2-26
Compare Speed Controller Response During Simulation With Target

Hardware Results . 2-27
Compare Current Controller Response During Simulation With Target

Hardware Results . 2-29

Plant Modeling
3

Creating Plant Model Using Motor Control Blockset 3-2

Use PMSM Block and Motor Parameters to Design Plant Model 3-3

Add Average-Value Inverter Block . 3-5

Create Motor Phase Current Sensing and Signal Conditioning Subsystem
. 3-6

Create Position Sensing Subsystem . 3-7

Add Delay in Plant Model . 3-8

Integrate Blocks and Subsystems . 3-9

Hardware Troubleshooting
4

Check ADC Inputs . 4-2
Description . 4-2
Action . 4-2

Verify PWM Outputs . 4-4
Description . 4-4
Action . 4-4

Check Hardware Connections . 4-6
Description . 4-6
Action . 4-6

Test Algorithm Design . 4-7
Description . 4-7
Action . 4-7

Check Generated Code . 4-8
Description . 4-8
Action . 4-8

iv Contents

Design the Controller

• “Design Field-Oriented Control Algorithm” on page 1-2
• “Design Current and Position Scaling Subsystems” on page 1-3
• “Design Current Controller Subsystem” on page 1-6
• “Perform Manual Gain-Tuning of Current Controller” on page 1-10
• “Design Speed Control Algorithm” on page 1-12
• “Perform Manual Gain-Tuning of Speed Controller” on page 1-14
• “PMSM Drive Characteristics and Constraint Curves” on page 1-15

1

Design Field-Oriented Control Algorithm
To implement the speed control algorithm for a motor, perform these tasks:

• Current scaling — Convert current from ADC counts to PU.
• Quadrature encoder position decoding — Read the quadrature encoder position counts and

calculate the rotor electrical position.
• Torque control — Implement current control in the d-q axis.
• Speed control — Implement speed control.

These steps help you implement the speed control algorithm for a PMSM using Motor Control
Blockset and are related to the model mcb_pmsm_foc_qep_f28379d used in the example “Field-
Oriented Control of PMSM Using Quadrature Encoder”. They explain the procedure to tune the
control parameters for d-axis and q-axis current controllers and the speed controller.

1 “Design Current and Position Scaling Subsystems” on page 1-3
2 “Design Current Controller Subsystem” on page 1-6
3 “Perform Manual Gain-Tuning of Current Controller” on page 1-10
4 “Design Speed Control Algorithm” on page 1-12
5 “Perform Manual Gain-Tuning of Speed Controller” on page 1-14

In these steps, variables are used to define datatypes and execution times of the current and speed
controllers. See the initialization script linked to the example model mcb_pmsm_foc_qep_f28379d
for details about the variables defined in these steps.

Tip A basic understanding of Simulink® is a prerequisite for following this workflow as these
workflow steps do not provide details on tasks like defining a datatype in a constant block or using
math operations blocks in Simulink.

See “Estimate PMSM Parameters Using Recommended Hardware” for estimating the motor
parameters. Then, see “Creating Plant Model Using Motor Control Blockset” on page 3-2 to design
a plant model. This helps you verify the control algorithm in simulation.

1 Design the Controller

1-2

Design Current and Position Scaling Subsystems
Use these steps to design the current and position scaling subsystems:

1 Create the current scaling subsystem.

This subsystem reads the current in ADC counts and converts it to per-unit (PU) values.

In this subsystem, the IaOffset and IbOffset Data Store Memory blocks are the ADC offsets for
current measurement and they are hardware specific. The file
mcb_SetInverterParameters.m contains the default ADC offset (CtSensAOffset and
CtSensBOffset) for few commercially available inverters. For details about ADC offset calibration
in hardware, see “Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset”.

In this subsystem, the motor phase current measured in ADC counts is converted to current in
PU. The PU_System.I_base value refers to the base current in this subsystem. For details about
the PU system, see “Per-Unit System”. See the mcb_SetPUSystem.m file that computes the PU
values for the system.

You can use the base values for computing the real-world values from per-unit. To implement the
real-world or SI unit values, see the model mcb_pmsm_foc_qep_f28379d_SIUnit used in the
example “Field-Oriented Control of PMSM Using SI Units”.

The IaOffset and IbOffset Data Store Memory blocks are used to share data between the current
and position subsystems.

2 Create the position scaling subsystem.

 Design Current and Position Scaling Subsystems

1-3

This subsystem reads the rotor position from the QEP pulse count.

In this subsystem, the Quadrature Decoder block reads the position count from the plant model
or hardware driver block. The block converts the rotor mechanical position in encoder position
counts to rotor mechanical angle in PU (0-1).

The Mechanical to Electrical Position (Mech2Elec Position) block adjusts the rotor mechanical
angle for QEP offset and converts it to electrical angle. The FOC algorithm needs the rotor
electrical angle to run the motor. To calculate the QEP encoder offset, see “Quadrature Encoder
Offset Calibration for PMSM Motor”.

The Speed Measurement block calculates speed from the rotor position. In the Speed
Measurement block parameters dialog box, set the Delays for speed calculation (number of
samples) parameter to 20. We selected the value 20 in this workflow so that the block can
measure the maximum speed of the motor that is under test. The Speed Measurement block
outputs the speed in PU.

1 Design the Controller

1-4

The resulting two subsystems (Calculate Phase Currents and Calculate Position and Speed) contain
the current scaling and position decoding logic.

 Design Current and Position Scaling Subsystems

1-5

Design Current Controller Subsystem
Use these steps to design the current controller subsystem:

1 From the Motor Control Blockset library in the Simulink Library Browser, use the Discrete PI
Controller with anti-windup & reset block (in the Controls/Controllers library) to design the d-
axis and q-axis current control. For example, this image shows the d-axis current controller
subsystem.

The MATLAB® function mcb_SetControllerParameters (in the model initialization script)
calculates the PI control gains for the d-axis and q-axis current controller and the speed
controller. For details about calculation of the controller gains, see “Estimate Control Gains and
Use Utility Functions”. For example, see the model initialization script file
mcb_pmsm_foc_qep_f28379d_data.m (used in the example “Field-Oriented Control of PMSM
Using Quadrature Encoder”) that uses a sampling time (Ts) of 50 μs.

In the subsystem diagram, the Enable variable is a Data Store Memory used to reset the
controller. Adding Enable variable is optional.

The subsystem also uses three constant blocks with these values:

• PI_params.Kp_i
• PI_params.Ki_i*Ts
• 0

Create a similar subsystem for the q-axis current PI controller. Integrate the subsystems for d-
axis and q-axis PI controllers into a single subsystem (Current_Controllers) that controls the d-
axis and q-axis currents.

2 Add the Clarke Transform, Park Transform, Inverse Park Transform, and Space Vector Generator
blocks from the Motor Control Blockset/Controls/Math Transforms library to the
Current_Controllers subsystem (that you created in step 1) as shown in this figure.

1 Design the Controller

1-6

3 Integrate the components that you created in step 2 into a single subsystem (Closed Loop
Control that implements closed loop field-oriented control) as shown in this figure.

4 Create an Output Scaling subsystem to scale the Pulse Width Modulation (PWM) outputs. This
subsystem outputs the normalized PWM duty cycles (0-1) for the plant model.

5 Create a new subsystem by integrating the current scaling (Calculate Phase Currents), QEP
position decoding (Calculate Position and Speed), Closed Loop Control, and Output Scaling
subsystems. Add the Trigger block from the Simulink/Ports & Subsystems library to this
subsystem and set the Trigger type parameter to function-call.

 Design Current Controller Subsystem

1-7

6 Add a Function-Call Generator block from the Simulink/Ports & Subsystems library to the
subsystem created in step 5. Set the Sample time parameter of the block to equal the control-
loop sample time, Ts (that has a default value of 50e-6 s).

7 Integrate the plant model and the controller subsystem that you created in step 6. For detailed
steps on how to create a plant model for a motor control system, see “Creating Plant Model
Using Motor Control Blockset” on page 3-2.

1 Design the Controller

1-8

 Design Current Controller Subsystem

1-9

Perform Manual Gain-Tuning of Current Controller
This step shows you how to manually tune the gains of the d-axis and q-axis current controllers. This
step is optional, however you can use it to tune the control gain parameters.

The procedure includes adding a step change to the Id_ref current and analyzing the current
controller performance using the step response of the Id_meas current to tune the d-axis current
controller. It explains a similar process for the Iq_ref current to tune the q-axis current controller.

Before starting the manual tuning procedure, you should lock the rotor in the plant model to ensure
that the motor does not run when you provide a step change to Id_ref or Iq_ref currents. In the
Surface Mount PMSM block parameters dialog box, set the Mechanical input configuration
parameter to Speed. Set the Spd input (of the Surface Mount PMSM block) to 0 to ensure that the
rotor is locked.

The integrated plant and controller subsystem simulation model enables you to manually tune the
gains of the current controllers. Provide a step input to Iq_ref in the range (0 to 0.2) PU and
observe the measured Iq_meas current feedback. Adjust the control parameters of the q-axis current
controller to meet your control objectives.

1 Design the Controller

1-10

Simulate the model and plot the Iq_ref_PU and Iq_meas_PU current signals and analyze the step
response. This helps you to tune the control parameters for the q-axis current controller to meet the
control objectives.

Follow the same procedure for the Id_ref current to tune the d-axis current controller. After tuning
both current controllers, set the Mechanical input configuration parameter, in the Surface Mount
PMSM block parameters dialog box, back to Torque.

 Perform Manual Gain-Tuning of Current Controller

1-11

Design Speed Control Algorithm
Use these steps to design a speed control algorithm:

1 Create a speed controller subsystem. The current controller subsystem that you created earlier
uses the Iq_ref current output of the speed controller subsystem as an input.

To create a speed controller subsystem, open the Simulink Library Browser and select the
Discrete PI Controller with anti-windup & reset block from the Motor Control Blockset/
Controls/Controllers library.

The MATLAB function mcb_SetControllerParameters (in the model initialization script)
calculates the PI control gains for the d-axis and q-axis current controller and the speed
controller. For details about calculation of the controller gains, see “Estimate Control Gains and
Use Utility Functions”. For example, see the model initialization script file
mcb_pmsm_foc_qep_f28379d_data.m (used in the example “Field-Oriented Control of PMSM
Using Quadrature Encoder”) that uses a sampling time (Ts_speed) of 500 μs. Optionally, you can
use the Enable Data-Store Memory block to reset the controller.

2 Create a subsystem for the speed controller and add Rate Transition blocks (from the
Simulink/Signal Attributes library) to the subsystem inputs with a sample time of
Ts_speed (execution time of the speed control loop).

3 Integrate the speed controller subsystem (that you created in step 2) with the integrated current
controller and plant model subsystems. Connect the Iq_ref_PU output port of the speed

1 Design the Controller

1-12

controller subsystem to the current controller subsystem input port through a Rate Transition
block. The Rate Transition block is needed because the two ports execute at different sample
rates. This figure shows an example of the parameter settings of the Rate Transition block
connected to the speed controller and the current controller subsystems.

This figure shows the integrated speed controller, current controller, and plant model
subsystems.

 Design Speed Control Algorithm

1-13

Perform Manual Gain-Tuning of Speed Controller
To manually tune the speed controller subsystem, provide a step input (in the range 0.2 to 0.5 PU)
to the Speed_ref_PU input in the speed controller subsystem (Speed Control). Monitor the
measured speed step response Speed_meas_PU and adjust the speed controller subsystem
parameters to meet your control objectives.

This figure shows the step response of the speed controller.

This procedure shows a method to implement speed control for a PMSM in simulation. Run the
simulation and analyze the controller performance.

You can generate C code from this control algorithm using Embedded Coder®. In addition, you can
deploy this code and the hardware drivers to the target hardware.

1 Design the Controller

1-14

PMSM Drive Characteristics and Constraint Curves

This example shows how to use the PMSM characteristic plotting and PMSM milestone speed
identification functions to obtain a control trajectory.

PMSM Drive Characteristics and Constraint Curves

The permanent magnet synchronous motors (PMSMs) come in different configurations.

• When the permanent magnets (PMs) are mounted on the surface of the rotor, the motor is called a
surface-mounted PMSM (SPMSM).

• When the PMs are embedded inside the rotor below the surface, the motor is called an interior
PMSM (IPMSM).

Various parameters affect whether you select an SPMSM or IPMSM for a given application.

In the d-q rotor reference frame for PMSMs, the d-axis is the axis parallel to the rotor's magnetic
orientation and the q-axis is the perpendicular axis, leading the d-axis. An SPMSM has equal d-axis
and q-axis inductances. An IPMSM has a higher q-axis inductance than its d-axis inductance. This
helps the IPMSM to utilize the reluctance torque in addition to the magnetic torque.

The corner speed of a PMSM is the speed at which the torque-vs-speed (drive characteristics) curve
of the PMSM changes shape (has a corner) for a given current limit. When you plot the drive
characteristics for rated torque (at rated current), the corner speed is also known as the rated speed
or base speed.

 PMSM Drive Characteristics and Constraint Curves

1-15

You draw the constraint curves for a PMSM to understand the possible operational area and
boundaries.

• Maximum torque per ampere (MTPA) trajectory of an IPMSM provides the highest torque for the
allowed stator current.

• Maximum torque per voltage (MTPV) trajectory of an IPMSM provides the highest torque while
satisfying the stator voltage constraint.

• Voltage limit curve (ellipse for an IPMSM or circle for SPMSM) is centered around a point that is
called the characteristic current. This curve shrinks with increasing rotor speed.

1 Design the Controller

1-16

These figures show three segments corresponding to the motor operation. The motor operates in
each segment as follows.

Segment I

• To begin the operation, the motor increases the torque from zero to the rated torque.
• The operating point shifts from point O to A along the MTPA trajectory (line segment OA). This

corresponds to the id and iq values at the tip of MTPA.
• The motor speed ω1, at which the voltage limit ellipse touches the MTPA curve and the current

limit circle, is the rated speed. This is the first milestone speed of the characteristic curve.

Segment II

• At the operating point A, the control reaches the maximum possible current, and the field
weakening strategy begins.

• The current trajectory moves along the current limit circle while maintaining the current
constraint from point A to B (line segment AB).

• The operating point B is the speed at which the voltage ellipse touches the current limit circle and
the MTPV curve. This is the second milestone speed of the characteristic curve.

 PMSM Drive Characteristics and Constraint Curves

1-17

Segment III

• Beyond the point B, the voltage ellipse shrinks further and the MTPV trajectory provides the
optimal torque until the maximum speed is reached at the operating point C (line segment BC).

• The theoretical maximum speed for a friction-free motor with MTPV is infinite. Practically, the
frictional components in the motor limit the maximum speed to a finite value. In Motor Control
Blockset™ software, the maximum speed, including the friction, is when the frictional torque
balances the motor torque produced at that speed. The practical speed limit of the motor is
usually lower than this maximum speed value. Several factors regulate this limit, including
mechanical stability, lower efficiency at higher speeds, and so on.

• The calculated maximum speed is the third milestone speed. In some motor configurations, MTPV
is not possible. In such cases, the frictional torque limits the operating point B, and there is no
operating point C. Such motors have two milestone speeds.

Additionally, note that in these figures:

• The drive characteristic curves show the operating points O, A, and B. These curves do not show
the operating point C because it is far away from the remaining points.

• The operating point A is also at the rated speed ω1. The second speed ω2 for the curve is higher
than rated speed, but lower than the speed at operating point B. The speed at the operating point
B is also the speed at which the current trajectory changes direction from following the current
limit circle to following the MTPV trajectory.

• The drive characteristics do not show segment I because the motor maintains torque at maximum
value, and the id and iq values remain at values corresponding to the rated torque.

This table shows the functions used in this example.

The pmsm and inverter arguments are structures. This table shows the fields in each structure.

1 Design the Controller

1-18

Maximum and Milestone Speeds of PMSM

To get all the milestone speeds of the PMSM, use the mcbPMSMSpeeds function. The operable speeds
are different for different field weakening control (FWC) strategies. The default FWC method is set to
voltage current limited maximum torque (VCLMT) control, also called optimal current vector control.
The function returns the speed values in rpm.

Set the fields for the pmsm and inverter structures and calculate the milestone speeds.

%inverter = mcb_SetInverterParameters('BoostXL-DRV8305'); % Use an inverter structure from a template
inverter.V_dc=24;
pmsm = mcb_SetPMSMMotorParameters('BLY171D');
milestone_speeds=mcbPMSMSpeeds(pmsm,inverter);
disp(milestone_speeds);

 5393
 9373

pmsm.I_rated=8;% Assuming a higher I_rated to be able to get MTPV trajectory
[milestone_speeds]=mcbPMSMSpeeds(pmsm,inverter);
disp(milestone_speeds);

 2342
 2958
 24369

Speed Milestones of PMSM with Different FW Control Methods

Calculate speed milestones for different field weakening methods. When you set the verbose option
to 1, each command displays the milestone speeds with the description.

Set the fields for the pmsm and inverter structures and calculate the milestone speeds.

inverter = mcb_SetInverterParameters('BoostXL-DRV8305');
pmsm = mcb_SetPMSMMotorParameters('BLY171D');
verbose=0; % setting the verbose=1 will also print the messages

milestone_speeds=mcbPMSMSpeeds(pmsm,inverter,'verbose',verbose,'FWCMethod','vclmt');
disp(milestone_speeds);

 PMSM Drive Characteristics and Constraint Curves

1-19

 5393
 9373

milestone_speeds=mcbPMSMSpeeds(pmsm,inverter,'verbose',verbose,'FWCMethod','cvcp');
disp(milestone_speeds);

 5393
 7008
 8361

milestone_speeds=mcbPMSMSpeeds(pmsm,inverter,'verbose',verbose,'FWCMethod','cccp');
disp(milestone_speeds);

 5393
 7008

milestone_speeds=mcbPMSMSpeeds(pmsm,inverter,'verbose',verbose,'FWCMethod','none'); % no id control, id is always set to 0.
disp(milestone_speeds);

 5393
 6226

id and iq at Different Milestone Speeds for Different FW Control Methods

Calculate id and iq values at the speed milestones for different field weakening methods. Each
command outputs the array with columns for each milestone speed, and each row of the column
provides id, iq, and speed (in electrical rad/s).

Set the fields for the pmsm and inverter structures and calculate currents and milestone speeds.

inverter = mcb_SetInverterParameters('BoostXL-DRV8305');
pmsm = mcb_SetPMSMMotorParameters('BLY171D');

[milestone_speeds]=mcbPMSMSpeeds(pmsm,inverter,'FWCMethod','vclmt','outputAll',0);
[outputArray]=mcbPMSMSpeeds(pmsm,inverter,'FWCMethod','vclmt','outputAll',1);
disp(outputArray);

 1.0e+03 *

 0 -0.0018
 0.0018 0.0004
 2.2591 3.9262

disp(round([milestone_speeds(1) outputArray(3,1)*(60/(2*pi))/pmsm.p; milestone_speeds(2) outputArray(3,2)*(60/(2*pi))/pmsm.p])); % comparing the corner rpm & max rpm, and the outputArray's corresponding field.

 5393 5393
 9373 9373

outputArray=mcbPMSMSpeeds(pmsm,inverter,'FWCMethod','cvcp','outputAll',1);
disp(outputArray);

 1.0e+03 *

 0 -0.0011 -0.0018
 0.0018 0.0014 0.0003
 2.2591 2.9355 3.5023

1 Design the Controller

1-20

outputArray=mcbPMSMSpeeds(pmsm,inverter,'FWCMethod','cccp','outputAll',1);
disp(outputArray);

 1.0e+03 *

 0 -0.0011
 0.0018 0.0014
 2.2591 2.9355

outputArray=mcbPMSMSpeeds(pmsm,inverter,'FWCMethod','none','outputAll',1);
disp(outputArray);

 1.0e+03 *

 0 0
 0.0018 0.0002
 2.2591 2.6081

Plot Drive Characteristics

The drive characteristics display the torque-vs-speed, power-vs-speed, and current-vs-speed
characteristic plots of a motor under the given operating constraints. Use the
mcbPMSMCharacteristics function to plot the drive characteristics.

Plot the drive characteristics of the PMSM under different field weakening control methods. You can
also plot the constraint curves simultaneously, in which case, you also plot the current trajectory (to
get maximum torque for a given speed) for the chosen drive characteristics. When you set the
driveCharacteristics option to 2, the function plots an additional figure in the vd-vq space with
the voltage constraint curve and the voltage trajectory. The default field weakening control is set to
VCLMT.

Set the fields for the pmsm and inverter structures and plot the characteristics.

inverter = mcb_SetInverterParameters('BoostXL-DRV8305');
pmsm = mcb_SetPMSMMotorParameters('BLY171D');
mcbPMSMCharacteristics(pmsm,inverter,'driveCharacteristics',2,'constraintCurves',1,'FWCMethod','vclmt')

 PMSM Drive Characteristics and Constraint Curves

1-21

1 Design the Controller

1-22

 PMSM Drive Characteristics and Constraint Curves

1-23

mcbPMSMCharacteristics(pmsm,inverter,'driveCharacteristics',1,'constraintCurves',1,'FWCMethod','cvcp')

1 Design the Controller

1-24

 PMSM Drive Characteristics and Constraint Curves

1-25

mcbPMSMCharacteristics(pmsm,inverter,'driveCharacteristics',1,'constraintCurves',1,'FWCMethod','cccp')

1 Design the Controller

1-26

 PMSM Drive Characteristics and Constraint Curves

1-27

mcbPMSMCharacteristics(pmsm,inverter,'driveCharacteristics',1,'constraintCurves',1,'FWCMethod','none')

1 Design the Controller

1-28

 PMSM Drive Characteristics and Constraint Curves

1-29

Plot Drive Characteristics for Imax

When the motor operates continuously supporting a constant load torque, that condition is the rated
operating condition, and the operating current is the rated current. The short-term rating of the
motor is higher than the continuous-current rating.

For this example, pmsm.I_rated is set to 1.8 A and pmsm.I_max is set to 8 A. You can see the
comparison between the drive characteristics and use this to determine the short-term operating
characteristics.

inverter = mcb_SetInverterParameters('BoostXL-DRV8305');
pmsm = mcb_SetPMSMMotorParameters('BLY171D');
mcbPMSMCharacteristics(pmsm,inverter,"FWCMethod","vclmt","driveCharacteristics",1,"imax",8,"constraintCurves",0)

1 Design the Controller

1-30

Next, assume a high continuous rating to let the motor run with MTPV under rated conditions. The
maximum current Imax also operates the motor under the MTPV condition, resulting in no change in
the maximum speed.

pmsm.I_rated=6;
mcbPMSMCharacteristics(pmsm,inverter,"FWCMethod","vclmt","driveCharacteristics",1,"imax",10,"constraintCurves",0)

 PMSM Drive Characteristics and Constraint Curves

1-31

When you specify the field weakening method as none, you might not see a change in maximum
speed for the original motor (unchanged rated current) even with higher current limit, but only the
peak torque and power changes.

pmsm.I_rated=1.8; % setting the rated current to the normal (low) value)
mcbPMSMCharacteristics(pmsm,inverter,"FWCMethod","cvcp","driveCharacteristics",1,"imax",8,"constraintCurves",0)

1 Design the Controller

1-32

mcbPMSMCharacteristics(pmsm,inverter,"FWCMethod","cccp","driveCharacteristics",1,"imax",8,"constraintCurves",0)

 PMSM Drive Characteristics and Constraint Curves

1-33

mcbPMSMCharacteristics(pmsm,inverter,"FWCMethod","none","driveCharacteristics",1,"imax",8,"constraintCurves",0)

1 Design the Controller

1-34

Customize Drive Characteristics

Customize the plots using the optional name-value arguments for the characteristics function.

The pmsm structure expects values for the p, Rs, Ld, Lq, FluxPM, B and I_rated fields. The
inverter structure expects a value for the V_dc field. Set the field values and plot the
characteristics.

inverter.V_dc= ;
pmsm.p=4;

pmsm.Rs= ;
pmsm.Ld=1e-3;

pmsm.Lq=pmsm.Ld* ;
pmsm.FluxPM=5.2e-3;
pmsm.B=1.16e-5;

 PMSM Drive Characteristics and Constraint Curves

1-35

pmsm.I_rated= ;

w_rpm= ;

T_load= ;

FWCMethod= ;
mcbPMSMCharacteristics(pmsm,inverter,'speed',w_rpm,'torque',T_load,'FWCMethod',FWCMethod, 'constraintCurves',0,'driveCharacteristics',1);

Plot Constraint Curves in id-iq Space

You can plot the constraint curves for PMSM in the id-iq space using the mcbPMSMCharacteristics
function.

Set the fields for the pmsm and inverter structures and plot the characteristics.

inverter = mcb_SetInverterParameters('BoostXL-DRV8305');
pmsm = mcb_SetPMSMMotorParameters('BLY171D');

1 Design the Controller

1-36

pmsm.Rs=0.1;

pmsm.Lq=pmsm.Ld* ;

w_rpm= ;

T_load= ;
mcbPMSMCharacteristics(pmsm,inverter,'speed',w_rpm,'torque',T_load);
legend("Position", [-0.044093,0.16512,0.60536,0.2])
xlim([-14.7 2.1])
ylim([-12.5 7.6])

Plot Constraint Curves at Maximum Speed

The constraint curves provide a secondary check for whether the calculated speeds are correct. When
you plot the constraint curves at maximum speed, the plot shows three intersecting curves: current
limit circle, voltage limit curve, and constant torque curve.

inverter = mcb_SetInverterParameters('BoostXL-DRV8305');

 PMSM Drive Characteristics and Constraint Curves

1-37

pmsm = mcb_SetPMSMMotorParameters('BLY171D');
pmsm.Rs=0.1;

pmsm.Lq=pmsm.Ld* ;
milestone_speeds=mcbPMSMSpeeds(pmsm,inverter);
mcbPMSMCharacteristics(pmsm,inverter,'speed',milestone_speeds(end),torque=0)
xlim([-9.1 2.2])
ylim([-5.9 6.0])
legend("Position",[0.57813,0.64246,0.59643,0.2869])

Plot Constraint Curves at Milestone Speeds

Instead of plotting the constraint curves for all the speed milestones in different figures, you can plot
them together in the same characteristic plot. In addition to the intersecting curves at maximum
speed, notice that at the corner speed, the MTPA curve, the current limit circle, and the voltage
constraint curve intersect.

inverter = mcb_SetInverterParameters('BoostXL-DRV8305');
pmsm = mcb_SetPMSMMotorParameters('BLY171D');

1 Design the Controller

1-38

pmsm.Lq=pmsm.Ld* ;
pmsm.Rs=0.1;
[milestone_speeds]=mcbPMSMSpeeds(pmsm,inverter,'constraintCurves',1);
legend("Position",[0.61205,0.66151,0.375,0.22976])
ax = gca;
chart = ax.Children(3);
datatip(chart,-3.099,-3.697,"Location","southwest");
chart = ax.Children(9);
datatip(chart,-2.764,3.847,"Location","northwest");
xlim([-15.0 1.8])
ylim([-12.2 12.3])

disp(milestone_speeds);

 5645
 9641

Plot Constraint Curves with Different Speeds in Same Figure

Plot the constraint curves of the motor at different speeds in the same figure.

 PMSM Drive Characteristics and Constraint Curves

1-39

Use the opacity option to set the opacity of the presently plotted constraint curve.

• When you set opacity to 1 (default), the function creates a new figure window for plotting.
• When you set opacity to a value less than 1 (but more than 0), the function plots the voltage

constraint, MTPA, and MTPV curves with changing opacity.

The opacity option is useful when you want to identify changes and track trends in these curves.

inverter = mcb_SetInverterParameters('BoostXL-DRV8305');
pmsm = mcb_SetPMSMMotorParameters('BLY171D');
pmsm.Rs=0.1;

pmsm.Lq=pmsm.Ld* ;
mcbPMSMCharacteristics(pmsm,inverter,'speed',4000,'torque',0,'opacity',1)
mcbPMSMCharacteristics(pmsm,inverter,'speed',5000,'opacity',0.8)
mcbPMSMCharacteristics(pmsm,inverter,'speed',6000,'opacity',0.7)
mcbPMSMCharacteristics(pmsm,inverter,'speed',7000,'opacity',0.6)
mcbPMSMCharacteristics(pmsm,inverter,'speed',8000,'opacity',0.5)
mcbPMSMCharacteristics(pmsm,inverter,'speed',9000,'opacity',0.4)
mcbPMSMCharacteristics(pmsm,inverter,'speed',10000,'opacity',0.3)
mcbPMSMCharacteristics(pmsm,inverter,'speed',11000,'opacity',0.2)
mcbPMSMCharacteristics(pmsm,inverter,'speed',12000,'opacity',0.1)
xlim([-7.61 1.23])
ylim([-1.55 9.05])
ax2 = gca;
chart2 = ax2.Children(3);
datatip(chart2,-7.541,-0.4029,"Location","southwest");
chart2 = ax2.Children(51);
datatip(chart2,-3.893,5.438,"Location","northwest");
xlim([-10.4 2.9])
ylim([-6.0 9.9])

1 Design the Controller

1-40

Actual vs Approximate Voltage Equations for Maximum Speed

Usually, the PMSM characteristic equations for vd and vq have an i × r term, which the computations
ignore because this value becomes negligible at higher speeds. In this example, you can include or
exclude the i × r term from the vd and vq equations while calculating the maximum speeds. The actual
form of the equation is as follows.

vd = idr − ωLqIq

vq = iqr + ωLdid + ωψm

This figure shows the difference in the drive characteristics with actual and approximate equations.

 PMSM Drive Characteristics and Constraint Curves

1-41

Set the fields for the pmsm and inverter structures and plot the characteristics with both the actual
and approximate equations.

inverter = mcb_SetInverterParameters('BoostXL-DRV8305');
pmsm = mcb_SetPMSMMotorParameters('BLY171D');
max_speed_actual_eqn=mcbPMSMSpeeds(pmsm,inverter,'verbose',verbose,'voltageEquation','actual');
max_speed_approx_eqn=mcbPMSMSpeeds(pmsm,inverter,'verbose',verbose,'voltageEquation','approximate');
disp([max_speed_actual_eqn max_speed_approx_eqn])

 5393 5359
 9373 8775

temporary_speed=6000;
mcbPMSMCharacteristics(pmsm,inverter,'speed',temporary_speed,'voltageEquation','actual',driveCharacteristics=1)
mcbPMSMCharacteristics(pmsm,inverter,'speed',temporary_speed,'voltageEquation','approximate','opacity',0.5,driveCharacteristics=1)

1 Design the Controller

1-42

xlim([-9.7 2.1])
ylim([-7.1 7.1])
legend("Position", [0.65054,0.72607,0.25,0.19286])
ax3 = gca;
chart3 = ax3.Children(13);
datatip(chart3,-7.744,2.653,"Location","southwest");
chart3 = ax3.Children(5);
datatip(chart3,-8.518,3.158,"Location","northwest");

 PMSM Drive Characteristics and Constraint Curves

1-43

Customize Constraint Curves

Change the parameters to plot the constraint curves.

The pmsm structure expects values for the p, Rs, Ld, Lq, FluxPM, B and I_rated fields. The
inverter structure expects a value for the V_dc field. Set the field values and plot the
characteristics.

inverter.V_dc= ;
pmsm.p=4;

pmsm.Rs= ;
pmsm.Ld=1e-3;

pmsm.Lq=pmsm.Ld* ;
pmsm.B=1.16e-5;
pmsm.FluxPM=5.2e-3;

1 Design the Controller

1-44

w_rpm= ;

T_load= ;

pmsm.I_rated= ;
mcbPMSMCharacteristics(pmsm,inverter,'speed',w_rpm,'torque',T_load);
xlim([-10.9 6.0])
ylim([-12.0 7.7])

legend("Position",[0.32518,0.11984,0.61786,0.2869])

Case Studies

This section provides case studies that show how to find a possible control trajectory for an IPMSM
and SPMSM. The case studies use the following workflow:

1 Plot the drive characteristics (including MTPV) and the constraint curves using the
mcbPMSMCharacteristics function. For this plot, use the corner speed.

 PMSM Drive Characteristics and Constraint Curves

1-45

2 Use the mcbPMSMCharacteristics function with driveCharacteristics set to 0 and
opacity set to 0.5 to plot the constraint curves over the figure generated in the previous step.
For this plot, use the speed at which MTPV starts.

3 Use the mcbPMSMCharacteristics function with driveCharacteristics set to 0 and
opacity set to 0.3 to plot the constraint curves over the figure generated in the previous step.
For this plot, use the maximum speed.

Doing so plots the three voltage limiting curves overlapping the current limit circle at appropriate
points in the final figures for both motors. These figures show the current trajectory for field
weakening along the highlighted cyan line. This line follows the MTPV path. When the motor
resistance is high enough, the MTPV curve shifts dynamically along with the speed, resulting in the
current trajectory not following any single MTPV curve. The resulting cyan curve is the achievable
MTPV curve because the example uses the actual equations to dynamically solve for operating points
and plot the curves.

To observe the shift in the MTPV curve at different resistance values, use the drop-down menu in the
following sections to pick a division factor for the resistance. With a higher resistance, the MTPV
curves are farther apart, and with a lower resistance, the MTPV curves are closer to each other.

Plot these characteristics for each type of motor.

IPMSM Case Study

Set the field values and plot the characteristics.

inverter.V_dc=24;
pmsm.p=4;
pmsm.Rs=0.45;

pmsm.Rs=pmsm.Rs/ ;
pmsm.Ld=1e-3;
pmsm.Lq=1.25*pmsm.Ld;
pmsm.FluxPM=5.2e-3;
pmsm.I_rated=10;
pmsm.B=1.16e-5;
[milestone_speeds]=mcbPMSMSpeeds(pmsm,inverter);
mcbPMSMCharacteristics(pmsm,inverter,'speed',milestone_speeds(1),'driveCharacteristics',1,'constraintCurves',1)

1 Design the Controller

1-46

mcbPMSMCharacteristics(pmsm,inverter,'speed',milestone_speeds(2),'driveCharacteristics',0,'constraintCurves',1,'opacity',0.5)
mcbPMSMCharacteristics(pmsm,inverter,'speed',milestone_speeds(end),'driveCharacteristics',0,'constraintCurves',1,'opacity',0.3)

 PMSM Drive Characteristics and Constraint Curves

1-47

SPMSM Case Study

Set the field values and plot the characteristics.

inverter.V_dc=24;
pmsm.p=4;
pmsm.Rs=0.45;

pmsm.Rs=pmsm.Rs/ ;
pmsm.Ld=1e-3;
pmsm.Lq=pmsm.Ld;
pmsm.FluxPM=5.2e-3;
pmsm.I_rated=10;
pmsm.B=1.16e-5;
[milestone_speeds]=mcbPMSMSpeeds(pmsm,inverter);
mcbPMSMCharacteristics(pmsm,inverter,'speed',milestone_speeds(1),'driveCharacteristics',1,'constraintCurves',1)

1 Design the Controller

1-48

mcbPMSMCharacteristics(pmsm,inverter,'speed',milestone_speeds(2),'driveCharacteristics',0,'constraintCurves',1,'opacity',0.5)
mcbPMSMCharacteristics(pmsm,inverter,'speed',milestone_speeds(end),'driveCharacteristics',0,'constraintCurves',1,'opacity',0.3)

 PMSM Drive Characteristics and Constraint Curves

1-49

Note: You can use the Tab button to get a list of supported optional arguments.

In the command line, in the live-script environment, or in the editor, the function provides
suggestions for the name-value arguments.

1 Design the Controller

1-50

References

[1] Mihailovic, Zoran. “Modeling and Control Design of Vsi-Fed Pmsm Drive Systems With Active
Load.” Thesis, Virginia Tech, 1998. https://vtechworks.lib.vt.edu/handle/10919/31493.

[2] Li, Muyang. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-
Source Inverters." Thesis, 2014. http://epublications.marquette.edu/theses_open/284.

 PMSM Drive Characteristics and Constraint Curves

1-51

https://vtechworks.lib.vt.edu/handle/10919/31493

Deploy and Validate System

• “Prepare Target Hardware” on page 2-2
• “Add Hardware Drivers to Simulation Model and Deploy to Target Hardware” on page 2-4
• “Task Scheduling in Target Hardware” on page 2-6
• “Adding ADC Driver Library Block” on page 2-8
• “Adding Quadrature Encoder Driver Block” on page 2-11
• “Add PWM Driver Block” on page 2-14
• “Add Hardware Interrupt Trigger Block for Current Control Loop” on page 2-18
• “Run in Open-Loop and Switch to Closed-Loop” on page 2-19
• “Model Configuration and Hardware Deployment” on page 2-23
• “Validate System” on page 2-25

2

Prepare Target Hardware
Follow these steps to prepare the target hardware before you deploy the control algorithm developed
using Motor Control Blockset to it.

Note You need Embedded Coder Support Package for Texas Instruments® C2000™ Processors to run
these steps.

We recommend that you see these references before following this procedure:

• Getting Started with Embedded Coder Support Package for TI C2000 Processors
• “Getting Started with Texas Instruments C2000 Microcontroller Blockset” (C2000 Microcontroller

Blockset)

In addition, try running the motor using open-loop control first using the “Run 3-Phase AC Motors in
Open-Loop Control and Calibrate ADC Offset” example.

Verify Direction of Rotation of Motor
The phase sequence of the motor connection in the target hardware determines the direction of
rotation of the motor. The Motor Control Blockset example models consider the direction of rotation
during the position ramp-up as a positive direction and the corresponding measured speed as
positive. It is recommended that you run the motor in open-loop control with a position ramp from 0
to 1 and ensure that the position feedback is positive. The example models in Motor Control Blockset
use this convention for the motor's direction of rotation.

For the supported hardware, the algorithm in the example “Quadrature Encoder Offset Calibration
for PMSM Motor”, runs the motor and finds the offset between the d-axis of the rotor and the encoder
index pulse (when the rotor is aligned to the d-axis of the stator). The red LED in the host model for
this example turns on when the direction of rotation is opposite. When this happens, you should
change the phase sequence of the motor wiring (swap any two motor wires).

See the example “Hall Offset Calibration for PMSM Motor” to identify the direction of rotation of a
motor that uses Hall sensors.

Note When you use a Hall sensor, ensure that the Hall sequence updated in the Hall Speed and
Position and Hall Validity blocks matches the sequence of the actual Hall signals. If you update an
incorrect Hall sequence, the direction read by the target hardware is the opposite of the actual
direction.

Calibrate Current Sensor
The signal conditioning circuits for the current sensor introduces a voltage offset in the analog to
digital converter (ADC) input when measuring both the positive and negative current. For example,
an ADC with a voltage reference of 3.3 V can have an offset of 1.65 V when using the Texas
Instruments BOOSTXL-DRV8305 hardware. This offset varies due to tolerances of the passive
components available in the signal conditioning circuit. It is recommended that you measure the ADC
offset of the hardware during initialization.

2 Deploy and Validate System

2-2

https://www.mathworks.com/videos/getting-started-with-embedded-coder-support-package-for-ti-c2000-processors-1573540550102.html

The hardware initialization subsystem, which is used in the majority of Motor Control Blockset
example models, computes the average current sensor ADC values and uses them as ADC offset
values for measuring the current. The subsystem represents the ADC offset values in ADC counts.

See the example “Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset” to
manually calibrate the ADC offset and update the computed offset value in the model initialization
script file.

See the Hardware Init subsystem available in the example “Field-Oriented Control of PMSM Using
Quadrature Encoder” to understand the ADC offset calculations that the example model performs
before starting the closed-loop motor control.

Calibrate Position Sensor
For a PMSM, the position used in the current control algorithm should align with the d-axis position
of the rotor. By default, the quadrature encoder position sensor reads the mechanical position of the
rotor with reference to its index pulse. The position offset is the position read by the quadrature
encoder when d-axis of the rotor aligns with phase a. To obtain an accurate motor position, use this
position offset value to correct the position read by the quadrature encoder sensor. Then provide the
corrected motor position value as an input to the current control algorithm.

A mismatch between the actual rotor position and the position provided to the current controller
affects the motor functionality and performance.

For more details, see the examples “Quadrature Encoder Offset Calibration for PMSM Motor” and
“Hall Offset Calibration for PMSM Motor”.

 Prepare Target Hardware

2-3

Add Hardware Drivers to Simulation Model and Deploy to
Target Hardware

This topic explains the steps for adding the hardware drivers to the simulation model and deploying
the model to the target hardware.

This topic uses the model mcb_pmsm_foc_sim as a example to explain the procedure for hardware
deployment. The model mcb_pmsm_foc_sim simulates the field-oriented control (FOC) algorithm for
implementing speed control for a PMSM.

As an example, the procedure explains about deploying the speed control algorithm to the target
hardware Texas Instruments LAUNCHXL-F28379D (connected to Texas Instruments BOOSTXL-
DRV8305). These are the hardware interface details:

Interface Pin on LAUNCHXL-F28379D
Phase-A input of the motor ADCINC2
Phase-B input of the motor ADCINB2
PWM A output from the motor EPWM1A
PWM B output from the motor EPWM2A
PWM C output from the motor EPWM3A
Enable Driver BOOSTXL-DRV8305 GPIO124

These steps explain how to add the hardware driver blocks from the Embedded Coder Support
Package for Texas Instruments C2000 Processors to the simulation model before deploying the
control algorithm to the target hardware LAUNCHXL-F28379D (connected to BOOSTXL-DRV8305).

1 “Task Scheduling in Target Hardware” on page 2-6
2 “Adding ADC Driver Library Block” on page 2-8
3 “Adding Quadrature Encoder Driver Block” on page 2-11
4 “Add PWM Driver Block” on page 2-14
5 “Add Hardware Interrupt Trigger Block for Current Control Loop” on page 2-18
6 “Run in Open-Loop and Switch to Closed-Loop” on page 2-19
7 “Model Configuration and Hardware Deployment” on page 2-23

You can use MATLAB variables to define or customize parameters like the execution time of the
current controller or the speed controller. See the model initialization script associated with the
example model mcb_pmsm_foc_sim for details about the variables defined in these steps.

To understand the prerequisites for deploying the control algorithm to any target hardware, see
“Prepare Target Hardware” on page 2-2. For details about the hardware connections, see “Hardware
Connections”.

To implement a simulation model that uses FOC algorithm for a PMSM, see “Design Field-Oriented
Control Algorithm” on page 1-2.

A basic understanding of Simulink is a prerequisite to follow these steps. For details about the ADC
driver, the quadrature encoder driver, and the hardware interrupt block, see the example model
mcb_pmsm_foc_qep_f28379d, which uses an architecture similar to what we describe.

2 Deploy and Validate System

2-4

Note For target hardware other than LAUNCHXL-F28379D (connected to BOOSTXL-DRV8305), you
can follow these steps, but select the driver blocks (ADC, PWM, Interrupt) from the appropriate
supported hardware library.

 Add Hardware Drivers to Simulation Model and Deploy to Target Hardware

2-5

Task Scheduling in Target Hardware
In the example model mcb_pmsm_foc_sim, configuring the current controller and the speed
controller are the two important tasks. The current controller is scheduled to run after every Ts (50
µsec for a 20 kHz switching frequency) and the speed controller runs after every Ts_speed (10*Ts). The
current controller reads the motor phase currents and position and computes the PWM duty cycle to
run the motor. The speed controller runs the control loop, calculates Iq reference for the current
controller, and controls the motor speed in the closed-loop.

In the target hardware, the current controller is synchronized with the ADC interrupt (for every Ts)
and the speed controller is triggered after every Ts_speed (10*Ts).

This figure shows the event sequence, interrupt trigger, and software execution time for the control
algorithm running in the target hardware.

In this figure, the execution times for the current controller and speed controller are not in scale. See
the processor datasheet to better understand the functionality of the processor peripherals such as
the ADC (analog-to-digital converter) and the PWM (pulse-width modulation).

The model follows this event sequence:

1 The processor peripheral PWM, which is center-aligned (Up-Down Counter), triggers the start-of-
conversion (SOC) event for the ADC module when the PWM counter value equals the PWM
period.

2 The ADC module converts the sampled analog signal into digital counts and triggers the end-of-
conversion (EOC) event.

3 The EOC triggers the ADC interrupt.
4 The current controller is scheduled to execute with the ADC interrupt.
5 The speed controller is scheduled to run after every Ts_speed.

2 Deploy and Validate System

2-6

You can also use SoC Blockset™ for task scheduling, profiling, and addressing challenges related to
ADC-PWM synchronization, controller response, and studying different PWM settings. For details, see
“Integrate MCU Scheduling and Peripherals in Motor Control Application”.

 Task Scheduling in Target Hardware

2-7

Adding ADC Driver Library Block
In the example model mcb_pmsm_foc_sim, the subsystem for current controller receives the motor
phase current in ADC counts from the plant model that converts the motor phase current from
Amperes to ADC counts. In the target hardware, the current controller reads the motor phase current
from the ADC driver block. Follow this workflow to add and configure the ADC driver block.

These steps explain addition and configuration of the ADC driver blocks in detail. In the Simulink
library browser, select and add the ADC block from the F2837xD library in Embedded Coder Support
Package for Texas Instruments C2000 Processors. Use the following steps to configure the ADC
blocks to read the phase-A and phase-B currents of the motor.

In the Texas Instruments BOOSTXL-DRV8305 inverter hardware, the phase-A current of the motor is
read from ADC C2 channel and phase-B current is read from ADC B2 channel. In the ADC driver
block for phase-A current (see the following figure), select ADC module C and conversion channel 2
to obtain the phase-A current of the motor. In the ADC driver block for phase-B current, select ADC
module B and conversion channel 2 to obtain the phase-B current of the motor. For other target
hardware, select the ADC module and channel where the motor phase currents are interfaced.

Select ePWM1_ADCSOCA as the SOC trigger source in the ADC driver blocks for phase-A and phase-B
currents because the PWM library block triggers the start-of-conversion event SOC0 when the PWM
counter equals the PWM period register.

In the ADC driver block for phase-B current (that uses ADC module B), select ADCINT1. This
triggers an ADC interrupt at the end-of-conversion (EOC) event. When the ADC interrupt occurs, the
FOC current control algorithm executes.

In the block parameters dialog box of ADC driver block for phase-A current, configure the ADC C
module and channel 2 to read the phase-A current of the motor, as shown in this table.

Tab and Parameter in ADC Block Settings
SOC Trigger > ADC Module C
SOC Trigger > SOC trigger number SOC0
SOC Trigger > SOC trigger source ePWM1_ADCSOCA
Input Channels > Conversion channel ADCIN2

Rename the block as ADC_C_IN2.

2 Deploy and Validate System

2-8

In the block parameters dialog box of ADC driver block for phase-B current, configure the ADC B
module and channel 2 to read phase-B current of the motor. In addition, configure ADC interrupt as
ADCINT1, as shown in this table.

Tab and Parameter in ADC Block Settings
SOC Trigger > ADC Module B
SOC Trigger > SOC trigger number SOC0
SOC Trigger > SOC trigger source ePWM1_ADCSOCA
SOC Trigger > Post interrupt at EOC trigger on
SOC Trigger > Interrupt selection ADCINT1
SOC Trigger > ADCINT1 continuous mode on
Input Channels > Conversion channel ADCIN2

Rename the block as ADC_B_IN2.

 Adding ADC Driver Library Block

2-9

2 Deploy and Validate System

2-10

Adding Quadrature Encoder Driver Block
In the Simulink Library Browser, add the eQEP block from Embedded Coder Support Package for
Texas Instruments C2000 Processors > F2837xD.

The eQEP block reads the quadrature encoder pulses and increments the position count. This block
outputs the quadrature encoder pulse for the mechanical rotor position wraparound when the
quadrature encoder index pulse is read.

See the section Quadrature Encoder Interface Configuration in “Model Configuration Parameters” for
configurations related to the quadrature encoder.

In C28x eQEP block parameters dialog box, configure the quadrature encoder to read the quadrature
encoder pulse count in the Texas Instruments processor and wrap the pulse counter output when
index pulse is found as shown in this table.

Tab and Parameter in eQEP Block Settings
General > Module eQEP1
General > Sample time -1
Position counter > Output position counter on
Position counter > Maximum position
counter value (0~4294967295)

2^16-1

Position counter > Position counter reset
mode

Reset on the first index event

Position counter > Output latch position
counter on index event

on

Position counter > Index event latch of
position counter

Falling edge

Rename the block as eQEP.

 Adding Quadrature Encoder Driver Block

2-11

eQEP1 module is selected because the quadrature encoder is connected to the QEP_A interface on
the LaunchPadXL28379d hardware board. The sample time is -1 because the library block is
function-call triggered by the ADC interrupt synchronously. The maximum position counter value is
2^16-1 because the position counter uses a 16-bit architecture in the library driver block. The
position counter reset mode setting wraps the position count when the index pulse is read.

Add the eQEP driver block module to the mcb_pmsm_foc_sim/Current control subsystem as
shown in this figure.

2 Deploy and Validate System

2-12

 Adding Quadrature Encoder Driver Block

2-13

Add PWM Driver Block
In the Simulink Library Browser, add the ePWM block from Embedded Coder Support Package for
Texas Instruments C2000 Processors > F2837xD.

Configure the ePWM1, ePWM2, and ePWM3 blocks for generating the PWM pulse. In the ePWM
block parameters dialog box, specify the pulse width modulation (PWM) counter period register value
calculated from CPU frequency and PWM frequency. For center-aligned PWM, divide the computed
value by 2.

PWM counter period = CPU clock frequency / PWM frequency / 2

For more details, see the TMS320f28379d processor ePWM peripheral.

In the F2837x/07x/004x/38x ePWM block parameters dialog box, update these settings to configure
PWM1 to generate PWM pulses in the target hardware.

Tab and Parameter in ePWM Block Settings
General > Module ePWM1
General > Timer Period Enter the PWM period value in the CPU clock

cycle

• PWM counter period = CPU clock frequency /
PWM frequency / 2

• For LaunchPad 28379D, clock frequency is
200 MHz. For PWM frequency of 20 kHz,

PWM counter period = 200e6 / 20e3 / 2;

PWM counter period = 5000
Counter Compare > Specify CMPA via Input port
Counter Compare > CMPA initial value Enter the PWM counter period/ 2 (2500)
Counter Compare > Specify CMPB via Input port
Counter Compare > CMPB initial value Enter the PWM counter period/ 2 (2500)
Deadband unit > Use deadband for ePWM1A on
Deadband unit > Use deadband for ePWM1B on
Deadband unit > Deadband polarity Active high complementary (AHC)
Deadband unit > Deadband Rising edge
(RED) period (0~16383)

15

Deadband unit > Deadband Falling edge
(FED) period (0~16383)

15

Event Trigger > Enable ADC start of
conversion for module A check box (only for
PWM1)

on

Event Trigger > Start of conversion for
module A event selection (only for PWM1)

Counter equals to period (CTR=PRD)

Rename the block as ePWM1.

2 Deploy and Validate System

2-14

In the F2837x/07x/004x/38x ePWM block parameters dialog box, update the settings to configure
PWM2 and PWM3 to generate PWM pulses in the target hardware. PWM2 and PWM3 are
synchronized with PWM1. Follow ePWM1 configurations (other than Event Trigger) and add these
configurations.

Tab and Parameter in ePWM Block Settings
General > Module ePWM2
General > Timer Period Enter the PWM period value in the CPU clock

cycle

• PWM counter period = CPU clock frequency /
PWM frequency / 2

• For LaunchPad 28379D, clock frequency is
200 MHz. For PWM frequency of 20 kHz,

PWM counter period = 200e6 / 20e3 / 2;

PWM counter period = 5000
General > Synchronization action Set counter to phase value specified via

dialog
General > Counting direction after phase
synchronization

Count up after sync

General > Phase offset value (TBPHS) 0
Counter Compare > Specify CMPA via Input port
Counter Compare > CMPA initial value Enter the PWM counter period/ 2 (2500)
Counter Compare > Specify CMPB via Input port
Counter Compare > CMPB initial value Enter the PWM counter period/ 2 (2500)
Deadband unit > Use deadband for ePWM1A on
Deadband unit > Use deadband for ePWM1B on
Deadband unit > Deadband polarity Active high complementary (AHC)
Deadband unit > Deadband Rising edge
(RED) period (0~16383)

15

Deadband unit > Deadband Falling edge
(FED) period (0~16383)

15

Rename the blocks as ePWM2 and ePWM3.

The range varies from 0 to PWM_counter_period. PWM outputs when PWM up-counter matches
CMPA and PWM down-counter matches CMPB. By default, the system inputs a duty cycle of 50% by
selecting PWM counter period / 2.

On the Event Trigger tab of PWM1 module, configure the ADC start of conversion event to begin
when the PWM counter equals the PWM period.

Synchronize the ePWM2 and ePWM3 blocks with the ePWM1 block by setting the synchronization
timing to the moment when the PWM counter equals to zero in the ePWM2 and ePWM3 blocks.

 Add PWM Driver Block

2-15

The ePWM blocks expect the duty cycle value to range from 0 to the PWM counter period value
(5000). The Control_System subsystem outputs the PWM in the range -1 to 1. The model needs to
scale the output to 0 to 5000 (PWM counter period value).

For simulation, add a variant source/sink to the hardware driver block for simulation and code
generation.

2 Deploy and Validate System

2-16

 Add PWM Driver Block

2-17

Add Hardware Interrupt Trigger Block for Current Control Loop
In the Simulink Library Browser, select and add the C28x Hardware Interrupt block from Embedded
Coder Support Package for Texas Instruments C2000 Processors > Scheduling.

In the block parameters dialog box, update the settings to configure the hardware interrupt
ADCINT1. Also, identify and update the CPU and PIE interrupts for the hardware interrupt ADCINT1.

Parameter in C28x Hardware Interrupt Block Settings
CPU interrupt numbers [1]
PIE interrupt numbers [2]

In the current control subsystem, add a Trigger block and set the Trigger type block parameter to
function-call. Connect this subsystem trigger input to the C28x Hardware Interrupt block as
shown in this figure.

In the Rate Transition block input to Current Control subsystem, change the Output port sample
time to -1.

Add a Function-Call Generator block in variant source to support the model simulation. In the
Function-Call Generator block, set the Sample time parameter as Ts (50e-6).

Simulate the model with the updated driver blocks and check the simulation results in the Simulation
Data Inspector. Variants ensure that ADC, PWM drivers, and interrupts are not active during
simulation.

2 Deploy and Validate System

2-18

Run in Open-Loop and Switch to Closed-Loop
When operating a permanent magnet synchronous motor (PMSM) with a quadrature encoder sensor,
we need an initial position to start running the motor. Because we do not have a method to determine
the initial position at the beginning (before starting the motor), run the motor using open-loop control
and ensure that the quadrature encoder index pulse is read at least once. At the quadrature encoder
index pulse, the quadrature encoder sensor resets its position to align with the mechanical angle of
the motor. The motor switches from an open-loop run to closed-loop speed control to maintain the
reference speed. This step is only applicable for a quadrature encoder sensor (and is not needed for a
Hall position sensor). A Hall sensor outputs the initial position of the rotor segment from the Hall
signal port inputs.

Follow these steps to implement an open-loop motor run with a transition to closed-loop control:

1 Copy the mcb_pmsm_foc_qep_f28379d/Current Control/Control_system subsystem to
your model. This adds the algorithm to run the motor in open-loop. This subsystem switches the
control from open-loop to closed-loop if EnClosedLoop input is 1. Add an input port
EnClosedLoop.

Addition of the Open Loop Start-Up subsystem adds the Data Store Read blocks for Enable and
SpeedRef. In addition, add the Data Store Memory blocks for Enable, EnClosedLoop, and
SpeedRef at the topmost level of the model.

When the open-loop run begins, the sign of SpeedRef (for algorithm details, see the Open Loop
Start-Up subsystem) decides the direction of the initial motor run. If SpeedRef is negative, the
motor spins in the opposite direction during the open-loop run.

 Run in Open-Loop and Switch to Closed-Loop

2-19

2 Copy the mcb_pmsm_foc_qep_f28379d/Current Control/Input Scaling/Calculate
Position and Speed subsystem to your model. This adds the IndexFinder subsystem to your
model. When quadrature encoder index pulse is detected for the first time, this subsystem sets
the IndexFound port to 1. Add an output port (that is connected to the IndexFound port) to the
Calculate Position and Speed subsystem and rename it to EnClosedLoop.

2 Deploy and Validate System

2-20

3 Connect the output port EnClosedLoop from the Input Scaling subsystem to the input port
EnClosedLoop in the Control_System subsystem as shown in this figure.

4 Copy the mcb_pmsm_foc_qep_f28379d/Speed Control/Speed_Ref_Selector subsystem
to your model and integrate it with the speed controller subsystem. When the closed-loop control
begins, this subsystem provides the Speed_Ref ouput signal. For a smooth transition from open-
loop to closed-loop, the speed measured is used as the speed reference during the open-loop run.
Add a Data Store Write block SpeedRef to the PI_Controller_Speed input port.

 Run in Open-Loop and Switch to Closed-Loop

2-21

5 In the plant model, add a step input to simulate the IndexFinder block for simulation. Rename the
step input to Switch to closed loop. See the mcb_pmsm_foc_qep_f28379d/Inverter
and Motor - Plant Model/Sensor_Measurments subsystem to see how the step input
switches to closed-loop. Select the step time of 0.1 and sample time of Ts_motor.

6 Create Data Store Memory blocks for EnClosedLoop, Enable, and SpeedRef. Enable block is used
to reset the PI integrator before running the motor.

Add these default values in the Data Store Memory blocks:

• Enable = 1
• EnClosedLoop = 0
• SpeedRef = 0.25

The Data Store Memory blocks are used to share data across the subsystem.
7 Run the simulation and observe the speed reference and the speed feedback signals.

2 Deploy and Validate System

2-22

Model Configuration and Hardware Deployment
Use these steps to select the target hardware in the Configuration Parameters dialog box.

1 In the Simulink model, click Hardware > Hardware Settings to open the Configuration
Parameters dialog box.

2 Open the Hardware Implementation tab and set Hardware board to TI Delfino F28379D
LaunchPad.

For any other custom board, navigate to the Hardware Implementation tab of the Configuration
Parameters dialog box and select the appropriate processor and edit the peripheral details in
Hardware board settings > Target hardware resources.

For the solver and quadrature encoder interface configuration details, see “Model Configuration
Parameters”.

Connect the Texas Instruments BOOSTXL-DRV8305 board and QEP connector to the Texas
Instruments LaunchPad XL hardware board. For hardware connection details related to Texas
Instruments C2000 LaunchPadXL, see “Hardware Connections”. The BOOSTXL-DRV8305 (attached
to the LaunchPadXL board) requires an enable signal. This signal is connected to the GPIO124 pin of
the processor.

In the Simulink Library Browser, add Embedded Coder Support Package for Texas Instruments
C2000 Processors > F2837xD > Digital Output. In the Digital Output block parameters dialog
box, change these settings:

Parameter in Digital Output Block Settings
GPIO Group GPIO120~GPIO127
GPIO124 on

Rename the block as GPIO_124.

Add a constant block with the value 1 as an input to the GPIO124 block as shown in this figure.

On the Hardware tab of the Simulink model, select Build, Deploy & Start. This generates the C
code, CCS project, and a target-specific .out file. The system uses serial communication to download
this target specific .out file to the target hardware and runs the downloaded algorithm in the
hardware.

 Model Configuration and Hardware Deployment

2-23

When the model is deployed to the target, the motor runs in open-loop and then runs in closed-loop
speed control. This example recommends that you use serial communication to monitor and debug
the signals. For details about implementing serial receive and transmit communications between the
host and target models, see the example model mcb_pmsm_foc_qep_f28379d. From the Serial
Receive block, update the Enable Data Store Memory block to start and stop the motor using the
serial commands received from the host model.

2 Deploy and Validate System

2-24

Validate System
In this section...
“Calculate Physical Motor Load in Target Hardware” on page 2-26
“Compare Speed Controller Response During Simulation With Target Hardware Results” on page 2-
27
“Compare Current Controller Response During Simulation With Target Hardware Results” on page
2-29

This section explains how to evaluate the accuracy of the plant (motor and inverter) model of the
physical motor and load connected to the motor. Validate the plant model and verify that the results
are close to the physical system measurements before using the plant model for implementing
advanced algorithms. You can validate the system by comparing the step response of speed control
and current control during simulation and after deployment to the target hardware connected to the
motor.

Use the example “Tune Control Parameter Gains in Hardware and Validate Plant” to measure the step
response of the current and speed controllers. The host model in this example communicates the
current reference to the target hardware and measures the step response of the current controller.

• You can use any speed control example from Motor Control Blockset to validate the system.
• Validate speed control by comparing the step response during simulation with the hardware test

values.
• Validate the d-axis current control by electrically or mechanically locking the rotor and comparing

the step response during simulation with the hardware test results.

You can use another method to validate the d-axis current control. Run the motor at a constant
speed and provide a step change in the reference d-axis current. This requires two modifications
in the speed control subsystem of the target model. Set a constant speed reference input.
Command Id reference from the host model. Compare the step response of the d-axis current
during simulation with the response obtained during the hardware tests.

• Validate the q-axis current control by mechanically coupling the motor with an external dynamo-
meter running in speed control. This requires two modifications in the speed control subsystem of
the target model. Discard the Id and Iq reference from the speed PI controller output. Command Id
reference from the host model. Compare the step response of the q-axis current during simulation
with the response obtained during the hardware tests.

Warning When capturing the step response in d-axis current control, always use a positive step.
Negative values of Id can damage the permanent magnet in the PMSM.

 Validate System

2-25

See the example “Tune Control Parameter Gains in Hardware and Validate Plant” to deploy the model
to the hardware. Perform motor parameter estimation because an accurate plant model is important
to ensure that the simulation results match the hardware test results.

Calculate Physical Motor Load in Target Hardware
Before comparing the controller responses during simulation with the responses obtained after target
hardware deployment, the load torque in plant simulation must match the motor load in the physical
system. Follow these steps to calculate the load torque in the physical system and update the
calculated load torque in the plant model.

2 Deploy and Validate System

2-26

1 Run the host model to connect it to the target hardware through serial communication.
2 Set Select Motor operating mode to Speed control.

The motor spins in speed control.
3 Select Id_meas in Monitor Signal #1 and Iq_meas in Monitor signal #2. Read the Id_meas

and Iq_meas values from the scope.
4 Convert the per-unit (PU) current to Amperes by multiplying it with PU_System.I_base.
5 Calculate the load torque in Nm using this equation:

Tload = 1.5 × pole_pair × [(f lux_pm ⋅ Iq) + (Ld− Lq)Id ⋅ Iq]

where,

f lux_pm = Permanment magnet flux linkage (pmsm.Flux_PM)

Ld, Lq = Inductance in Henry (pmsm.Ld, pmsm.Lq)

Id, Iq = Current measured in Amperes

Id_meas, the measured Id current (in PU), equals 0.
6 In the mcb_pmsm_operating_mode_f28379d/Motor and Inverter/Plant Model (sim)

sub system, provide the calculated load torque value as an input to the LdTrq port of the PMSM
motor block.

Compare Speed Controller Response During Simulation With Target
Hardware Results
During simulation, provide a speed step input and note the speed response. On the target hardware,
command the speed reference step input and observe the speed feedback. Compare the resulting
step response during simulation with the response obtained from target hardware to determine the
accuracy of the plant model.

1 Simulate the model mcb_pmsm_operating_mode_f28379d. Plot the reference speed and the
measured speed signals. By default, this example provides a step input of 0.2 to 0.5 to the
simulation model.

2 Run the host model to communicate with the target hardware.
3 Change Select Motor operating mode from Stop to Speed control.
4 In the host model, select Speed_ref in Monitor Signal#1 and Speed_meas in Monitor

Signal#2.
5 Open the scope in the host model.
6 In host model interface, change the speed_ref from 0.2 to 0.5 and observe the step change in

the scope.
7 Compare the step response obtained from the hardware with the simulation results.

Step Response Analysis for Speed Controller

Compare the step response obtained from simulation with the measurements obtained from the
target hardware. The results may vary depending on the tolerances in the plant model. Generally,
simulation results are close to the values measured on the target hardware.

 Validate System

2-27

2 Deploy and Validate System

2-28

 Peak overshoot
(%)

Peak time (ms) Rise time (ms) Settling time
(ms)

Simulation results 20.13% 16.023 5.561 61.027
Hardware results 22 % 14.324 5.041 51.148

Compare Current Controller Response During Simulation With Target
Hardware Results
During simulation, provide a step current reference and note the current response. This example
needs some changes to simulate the current reference step input. Follow these steps to perform the
model changes. When using the target hardware, command the current reference step input and
observe the current feedback. Compare the resulting step response in simulation with the response
obtained from the target hardware to determine the accuracy of the plant model.

1 For hardware measurements, run the host model.
2 Change Select Motor operating mode from Stop to Torque control.
3 Select Id_ref in Monitor Signal#1 and Id_meas in Monitor Signal#2 in the host model.
4 Open the scope in the host model.

 Validate System

2-29

5 Change Id_ref from 0.02 to 0.22 and observe the step change in the scope. Ensure that the
motor is not running. The scope displays the step response for the Id_ref input.

6 For simulation, make these two changes in the model. In the
mcb_pmsm_operating_mode_f28379d/TorqueControl/Control Modes/torque_control
subsystem add a step input for the d-axis current controller. Choose a step input of 0.02 to 0.22
at 1 second. Select time sample as -1. In the data-type conversion block, select the output
datatype as fixdt(1,32,17).

7 In the PMSM motor block available in the mcb_pmsm_operating_mode_f28379d/Motor and
Inverter/Plant Model (sim) subsystem, change the Mechanical input configuration to
Speed and input 0 to the Spd input port.

8 Run the simulation and measure the Idref_PU and Idmeas_PU values in the Simulation Data
Inspector.

9 Compare the step response obtained from the hardware with the simulation results.

Step Response Analysis for d-axis Current Controller

Compare the scope results obtained from simulation with the measurements from the target
hardware. The results may vary depending on the tolerances in the plant model. With an accurate
plant model, the simulation results are closer to the measured results from the target hardware.

2 Deploy and Validate System

2-30

 Validate System

2-31

 Peak overshoot
(%)

Peak time (µs) Rise time (µs) Settling time
(µs)

Simulation results 14 % 300 150 500
Hardware results 8.18 % 400 150 800

The accuracy of the plant model improves the accuracy of simulation, and therefore, it helps match
the simulation results to the hardware test results.

Tip If the simulation results differ considerably from the hardware measurements, verify the delay
and scaling factor in the plant model.

Note For the q-axis current controller, align the motor to the d-axis and mechanically lock the rotor.
Follow this for the d-axis current controller for comparative analysis. You can achieve external
mechanical locking through the mechanical braking system or by coupling with a dynamo-meter
motor running in speed control.

2 Deploy and Validate System

2-32

Plant Modeling

• “Creating Plant Model Using Motor Control Blockset” on page 3-2
• “Use PMSM Block and Motor Parameters to Design Plant Model” on page 3-3
• “Add Average-Value Inverter Block” on page 3-5
• “Create Motor Phase Current Sensing and Signal Conditioning Subsystem” on page 3-6
• “Create Position Sensing Subsystem” on page 3-7
• “Add Delay in Plant Model” on page 3-8
• “Integrate Blocks and Subsystems” on page 3-9

3

Creating Plant Model Using Motor Control Blockset
An accurate plant model is a vital part of motor control system development. After creating an
accurate plant model, you can verify the functionality of the control system, conduct closed-loop
model-in-the-loop tests, tune the controller gains using simulation, and optimize the algorithm before
you deploy the model in the actual plant.

When you create a plant model using Motor Control Blockset, you model these components to
simulate the functional behavior in a simulation environment:

• Permanent Magnet Synchronous Motor (PMSM)
• Average-value Inverter
• Sensors and signal conditioning circuits
• Processor peripherals: Analog-to-Digital converter (ADC) and Pulse-width-modulator (PWM)

You can verify the functionality of the plant model you create by:

1 Reading the normalized PWM duty cycle from the control algorithm.
2 Simulating the motor for the connected load.
3 Obtaining the output motor phase current (in terms of ADC counts) and the output motor

position (in terms of encoder pulse counts) from the simulation.

The workflow to create a plant model involves these steps.

Note See the plant model in the mcb_pmsm_foc_qep_f28379d.slx model that is used in the
example “Field-Oriented Control of PMSM Using Quadrature Encoder”.

1 “Use PMSM Block and Motor Parameters to Design Plant Model” on page 3-3
2 “Add Average-Value Inverter Block” on page 3-5
3 “Create Motor Phase Current Sensing and Signal Conditioning Subsystem” on page 3-6
4 “Create Position Sensing Subsystem” on page 3-7
5 “Add Delay in Plant Model” on page 3-8
6 “Integrate Blocks and Subsystems” on page 3-9

3 Plant Modeling

3-2

Use PMSM Block and Motor Parameters to Design Plant Model
You can use the surface mount or interior PMSM blocks from Motor Control Blockset in two ways to
create a plant model.

• Estimate motor parameters by using Motor Control Blockset and open a Simulink model with
PMSM motor block (auto-populated with estimated parameters):

The Motor Control Blockset parameter estimation workflow helps you to determine the motor
parameters by performing a series of tests on the motor. For details, see “Estimate PMSM
Parameters Using Recommended Hardware”. After successfully estimating the motor parameters,
click Open Model in the parameter estimation host model. A new model opens with the Interior
PMSM block updated with the estimated motor parameters.

• Create a new model and manually add the PMSM motor block from the Motor Control Blockset
library:

Create a new Simulink model and add the Surface Mount PMSM block from the Motor Control
Blockset library in the Simulink library browser. Open the block mask and enter the motor
parameters manually. You can obtain these parameters by using:

• The Motor Control Blockset parameter estimation workflow. For details, see “Estimate PMSM
Parameters Using Recommended Hardware”.

• The motor datasheet or from other known sources.

 Use PMSM Block and Motor Parameters to Design Plant Model

3-3

In Surface Mount PMSM block, set the Simulation type parameter to Discrete and the Sample
Time (Ts) parameter to 25e-6 (half of the control frequency). Discrete simulation improves the
simulation speed.

If the parameters are available in a MAT-file, click the Browse button on the block parameters
dialog to locate the MAT-file and then click Load from file to load the parameters.

The files containing the default motor parameters are available in the location <matlabroot>
\toolbox\autoblks\autoblksshared\mcbtemplates as a reference.

In the Surface Mount PMSM block parameters dialog, you can also represent the motor
parameters as workspace variables and use the model initialization script (m-script) to
automatically update these variables using the model initialization callback. Parameters of some
commercially available motors are available in the file mcb_SetPMSMMotorParameter.m as a
reference. For details about this m-script file, see “Estimate Control Gains and Use Utility
Functions”.

3 Plant Modeling

3-4

Add Average-Value Inverter Block
In the Simulink model that contains the Surface Mount PMSM block, add an Average-Value Inverter
block from the Motor Control Blockset library. The Average-Value Inverter block reads the normalized
PWM duty-cycle and DC voltage input (in volts) and outputs the phase voltages. Connect the Vabc
output port of the Average-Value Inverter block to the PhaseVolt input port of the Surface Mount
PMSM block.

 Add Average-Value Inverter Block

3-5

Create Motor Phase Current Sensing and Signal Conditioning
Subsystem

In the physical hardware, the motor current read by the current sensors is filtered and scaled to an
ADC measurable range. The ADC peripheral in the processor reads the current signals and outputs
the ADC counts for the current control algorithm. This figure shows an example of how you can model
the motor phase current sensing and signal conditioning algorithms.

The maximum measurable peak current is considered as the base current. The ADC counts can be
calculated from the base current and full-scale ADC values, along with the ADC offset, by using this
equation:

ADC counts =
Full scale ADC counts 2

Base current (in amperes) + ADC offset

For the default inverter and signal conditioning circuit parameters for commercially available
inverters, see the mcb_SetInverterParameters.m file. To add a new inverter configuration, create
an inverter type in this file and use this in the model initialization script for parameter initialization. If
you are using low-pass filters for measuring the current, add an average model to filter the current.

3 Plant Modeling

3-6

Create Position Sensing Subsystem
The position sensing subsystem reads the motor position from the Surface Mount PMSM block and
simulates the QEP encoder pulse counts. The Surface Mount PMSM block outputs the mechanical
position of the motor in rad/s.

Convert the position in the range 0 to 2π rad/s to QEP encoder counts as shown in this figure.

For details about detecting the QEP index position offset with respect to the rotor d-axis, see
“Quadrature Encoder Offset Calibration for PMSM Motor”.

 Create Position Sensing Subsystem

3-7

Add Delay in Plant Model
You can add delays in the plant model to simulate the control algorithm processing delays in the
hardware and the PWM switching delays. The algorithm processing delay in the processor is the time
taken to update the PWM. PWM switching delay is usually half the switching time period.

For adding delays in the discrete time solver with a sample rate of Ts/2 (half the switching time
period), the processor computation delay and PWM switching delay are factored as Z-1 (Ts/2).

3 Plant Modeling

3-8

Integrate Blocks and Subsystems
The final step of designing the plant model using Motor Control Blockset is to integrate the blocks
and subsystems that you created earlier. The completed plant model accepts the normalized PWM
from the controller and outputs the motor phase currents and position.

 Integrate Blocks and Subsystems

3-9

Hardware Troubleshooting

• “Check ADC Inputs” on page 4-2
• “Verify PWM Outputs” on page 4-4
• “Check Hardware Connections” on page 4-6
• “Test Algorithm Design” on page 4-7
• “Check Generated Code” on page 4-8

4

Check ADC Inputs

Description
The analog to digital converter (ADC) can measure incorrect values. For example, in custom-designed
analog circuits, currents measured by ADC can be incorrect due to noise, out-of-phase measurements,
or sampling issues. This results in faulty feedback to the control system that leads to instability.

Action
Verify ADC Pin

See the hardware schematics and verify that you identified and configured the correct ADC pins for a
given measurement (a-phase, b-phase).

Verify ADC Block Configuration

Open the ADC block and verify that the Input Channels, ADC module, SOC trigger, SOCx
acquisition window parameters are configured correctly.

ADC sampling begins with the SOC event. In some cases, for example, when sensing the current
through the shunt resistors, ADC sampling requires synchronization with the bottom leg switches. In
this case, verify that the SOC event is configured correctly with ADC-PWM interrupt synchronization.
This also results in reduced EMI/EMC noise in the sampling because ADC conversion happens outside
the PWM transition. For more information, see “Task Scheduling in Target Hardware” on page 2-6.

Reduce Noise in ADC Sampling

You may notice noise in the ADC samples. This may happen either if there is EMI/EMC or if sampling
is faster than what the device can support. EMI/EMC can be reduced by improving the hardware
design.

To avoid problems due to faster sampling, see the device datasheet and determine the maximum
supported clock frequency of the ADC. For example, if you are using a Texas Instruments
TMS320F28379D series microcontroller, it can support a CPU clock frequency of 200 MHz, but the
maximum clock frequency supported by the ADC module is 50 MHz. Use this value to set ADC clock
prescaler (ADCCLK) parameter on the Hardware Implementation tab in the Configuration
Parameter dialog box of your model.

Check VDD of Current Measurement Device

Many current measurement devices derive VDD from the DC power supply (VDC). In addition, the
device enable pin also determines the supply voltage to the internal current measurement circuit (for
example, Texas Instruments BOOSTXL-DRV8305). Absence of VDD (or the device enable pin) results
in 0 V at the ADC of the target hardware. Ensure that these conditions are not present in your
hardware.

Check ADC Current Conventions

Check if you are using the correct conventions for ADC current sensing. Motor Control Blockset
considers the current entering the motor (or leaving the inverter) as positive. This convention
changes with the hardware because of the differences in the inverting or non-inverting op-amp and

4 Hardware Troubleshooting

4-2

the analog current sensing circuit. Check the inverter current sensing circuit op-amp and set the
inverter.invertingAmp variable (control parameter) to:

• 1 — If the current sensing circuit detects the current entering motor as positive.
• –1 — If the current sensing circuit detects the current entering motor as negative.

For more information about setting a control parameter, see “Estimate Control Gains and Use Utility
Functions”.

Test Readability of Unipolar and Bipolar Signals

Check if the measurement circuit is designed to read unipolar and bipolar signals.

Check if the inverter.ISenseVoltPerAmp variable (control parameter) is set correctly according
to the hardware specification. For more information about this parameter, see “Estimate Control
Gains and Use Utility Functions”.

DC signal measurement circuits are usually unipolar. For example, BoostXL-DRV8305 has a DC
voltage measurement circuit that converts the voltage range of 0 – 44.3 V to 0 – 3.3 V at the ADC.
Voltage ADCs cannot measure negative voltages.

AC signal measurement circuits are usually bipolar. For example, BoostXL-DRV8305 has an AC
current measurement circuit that converts the current range of –23.57 to +23.57 A to 0 – 3.3 V at the
ADC with an offset of 1.65V.

Check ADC Offset and Gain computation

Verify the ADC offset values before deploying and executing the code on the target hardware. For
more information, see “Current Sensor ADC Offset and Position Sensor Calibration”.

Check the accuracy of the computed gain for conversion of the ADC counts to signal value in the real
world as described in the previous section.

Check ADC Resolution

Check the ADC resolution to determine the minimum value of the signal that it can measure. For
example, a 3.3 V 12-Bit ADC that can measure ±16.5 A has a resolution of 0.1 Volts/Ampere. The
minimum current that the ADC can measure (excluding EMI/EMC and noise) is approximately 8 mA.

Determine the minimum measurable current by the ADC. Verify that this current is greater than the
ADC signal-to-noise ratio, tolerance, and errors. Ensure that you simulate and check the model before
deploying it to the target hardware.

Low ADC resolution can result in difficulties when implementing sensorless algorithms to control
motors that consume very small currents (for example, 50 mA AC) on no load. In addition, EMI/EMC
and noise affects ADC measurements. It is a good practice to simulate the model and verify if the
ADC resolution is appropriate. Increase the gain of the sensor amplifier on the hardware to increase
the ADC resolution.

 Check ADC Inputs

4-3

Verify PWM Outputs

Description
The motor control algorithm generates the pulse width modulation (PWM) signals to control the
motor through inverter. In some cases, the PWM signals can be incorrect due to improper switching
frequency, wrong interrupt and PWM generation configurations, or error in the duty cycles. Incorrect
PWM signals result in improper switching of the inverter.

Action
Verify PWM Frequency

Use an oscilloscope to verify that the generated PWM signals has the expected switching frequency.
In embedded targets, configuration of the PWM module depends on factors such as target hardware
and clock frequency. For example, you can use these equations to calculate PWM_Counter_Period for
Texas Instruments C2000 targets that have the ePWM module configured to work with the Up-Down
counting mode:

CPU_frequency (Hz) = 200e6

PWM_frequency (Hz) = 20e3

PWM_Counter_Period (PWM timer counts) = CPU_frequency/ PWM_frequency/ 2

Verify PWM Generation

Ensure that you feed a correct PWM duty cycle to the switching device (for example, MOSFET or
IGBT). PWM generation depends on these active-high and active-low configurations:

• Active high — 25% duty results in 25% on-time for upper leg MOSFET or IGBT (recommended).
• Active low — 25% duty results in 75% on-time for upper leg MOSFET or IGBT.

In addition, check if there is any inversion of the PWM signal between the target and MOSFET due to
the gate driver or isolator circuit (25% gate pulse must be 25% on-time by the driver chip).

Verify Interrupt Configuration

Majority of the controller algorithms are designed to work with the ADC-PWM synchronization for
advantages like current sensing, reduced EMI/EMC interference.

ADC sampling begins with the SOC event. In some cases, for example, when sensing the current
through the shunt resistors, ADC sampling requires synchronization with the bottom leg switches. In
this case, verify that the SOC event is configured correctly with the ADC-PWM interrupt
synchronization. This also results in reduced EMI/EMC noise in the sampling because ADC
conversion happens outside the PWM transition. For more information, see “Task Scheduling in
Target Hardware” on page 2-6.

Verify Updates to PWM Duty

Verify if the PWM duty is updated or refreshed in synchronization with the PWM module. To
implement a robust control, it is a good practice to timely refresh the PWM duty (for example, once in
Tpwm, preferably before Tpwm/ 2).

4 Hardware Troubleshooting

4-4

Check Behavior at PWM Generation Limits

Check the datasheet of the PWM driver circuit for support at the 0% duty and 100% duty limits. For
functional safety, it is a good practice to limit the maximum duty cycle somewhere between 95 and
98% by setting the corresponding value in the DQ Limiter block.

Check for Incorrect PWM Generation Configuration

Verify that the hardware uses the correct PWM generation configuration. For example, BoostXL-
DRV8305 supports 3-PWM mode, 6-PWM mode, and 1-PWM mode.

Check for Default Dead Bands

Check if there are dead bands introduced by the motor driver board. Consider this while generating
dead bands from the PWM module.

Confirm Maximum Switching Frequency

Determine the maximum possible switching frequency for the inverter and driver from the device
datasheets. Ensure that the model does not exceed this value.

 Verify PWM Outputs

4-5

Check Hardware Connections

Description
When you try to run the motor, you may face problems due to incorrect hardware connections. This
may result in rise in temperature of the motor, inverter, hardware board or an abnormal behavior
such as uncontrolled motor speed.

Action
Verify Hardware Connections

Check the wiring and connections before getting started. For details, see “Hardware Connections”.
For instructions to determine the serial port connected to the hardware, see “Find Communication
Port”.

Manually Check Rotation of Shaft

Verify that the shaft of your motor is rotating freely with minimal rotational friction. A mechanical
failure in the bearings may result in thermal overloads, which can damage the motor windings.

Verify Rated Currents for Motor and Inverter

Determine the rated currents of the motor and inverter from the manufacturer datasheet. Ensure that
you do not overload the motor for durations longer than what the original equipment manufacturer
(OEM) has specified.

Check Motor and Inverter Temperature

Ensure that the temperature of the motor windings and inverter heat sink are within the expected
temperature range. Overloading the hardware results in excessive heat that can damage the
hardware.

Verify Measurements from Analog Circuits

Verify the range of the signals that you measure from the analog circuits (for example, the maximum
current of the inverter).

Check for Additional Resistors

After you complete the process of estimating the motor parameters, you should not change the motor
connections because this leads to differences in the contact and cable resistances. In addition, verify
that the initialization script of the model takes into consideration any additional resistors present in
the power circuit.

Verify Fault Pin and Enable Pin Connections

Check and verify that the fault pins and enable pins are connected correctly on the target hardware
board.

4 Hardware Troubleshooting

4-6

Test Algorithm Design

Description
When simulating or running a model on the target hardware, you can face problems because of
defects in the implementation of the control algorithm. This can lead to an uncontrolled motor speed,
differences in the current waveforms or mismatch in PI controller gains between simulation and
target hardware.

Action
Verify Parameters and Other Input Data

Verify that you identified and entered the inputs (for example, motor and inverter parameters, clock
speed, and switching frequency) correctly. If the input data is incorrect, the motor control algorithm
will not work. Use the Motor Control Blockset parameter estimation tool to compute the motor
parameters. For more details, see “Estimate PMSM Parameters Using Recommended Hardware”.

Verify Waveforms of Measured Currents

After you load the motor shaft, verify that the waveforms for the measured signals match the shape
visible in the simulations. For example, field-oriented control ensures perfect sinusoidal waveforms
for currents. For exceptions, see “Check ADC Inputs” on page 4-2.

Verify Control System Design

Verify that all the controllers used in the model (for example, PI controllers and sliding mode
observer) are designed correctly.

You can start by simulating the model by using the estimated motor parameters before deploying the
model to the target hardware. Observe and verify the step responses for the current and speed by
using both simulation and deployment on the target hardware.

Model-Based Design ensures that correct simulation of the model results in identical outcomes on the
target hardware with identical gains (that match the gain values computed during simulation) for all
the controllers.

Verify Signal Representation

Check if you can represent the signals correctly for a selected data type. For example, it is not
possible to store the value 1024 in the 8-bit data-type. Similarly, it may not be possible to represent
some gain values in the selected fixed-point resolution.

Verify Base Values for PU Representation

If you are working with the Per-Unit system, please check that the base value of a quantity (for
example, base current), is selected correctly. For more details, see “Per-Unit System”.

 Test Algorithm Design

4-7

Check Generated Code

Description
When simulating or running a model on the target hardware, you may face problems due to errors in
the software architecture of a model. These errors can affect the performance of control algorithm
and increase the code execution time on the hardware.

Action
Check Sample Times

Verify the base rates and other execution rates of the model by using Debug > Information
Overlays > Sample Time > Colors. The different sample times of the model decide the execution of
different tasks in the simulation and in the generated code.

Check for Overruns

Verify that there are no overruns beyond the available sample time. Algorithms with overruns affect
the control system stability. If required, optimize the model for code execution. For more details, see
“Code Verification and Profiling Using PIL Testing”.

Verify Low-Priority Interrupt Service Routines (ISR)

Verify that the low-priority interrupt service routines (ISR) (for example, speed control loop and
communication service routines) are executed according to the design and are not ignored by any
overruns in the high-priority ISRs.

Check Execution Order Priority

Check that the model uses a correct execution order priority. Verify that all the interrupts are
configured correctly.

Verify Software Initialization

To allow the analog circuits to get ready, check that the software initialization delay (for example,
ADC blanking time, PWM driver, and charge pump) is greater than the required value specified by the
manufacturer (for example, 2µs).

Check Hardware Initialization

Verify that you initialized the target hardware and inverter correctly. Generally, the driver is disabled,
which brings all the switches to a high impedance state and initializes the important variables to the
default values.

Verify Third-Party Tool Version

Verify that you are using the recommended versions of the third-party tools. Check that bugs in the
third-party software do not cause regressions.

4 Hardware Troubleshooting

4-8

	Design the Controller
	Design Field-Oriented Control Algorithm
	Design Current and Position Scaling Subsystems
	Design Current Controller Subsystem
	Perform Manual Gain-Tuning of Current Controller
	Design Speed Control Algorithm
	Perform Manual Gain-Tuning of Speed Controller
	PMSM Drive Characteristics and Constraint Curves

	Deploy and Validate System
	Prepare Target Hardware
	Verify Direction of Rotation of Motor
	Calibrate Current Sensor
	Calibrate Position Sensor

	Add Hardware Drivers to Simulation Model and Deploy to Target Hardware
	Task Scheduling in Target Hardware
	Adding ADC Driver Library Block
	Adding Quadrature Encoder Driver Block
	Add PWM Driver Block
	Add Hardware Interrupt Trigger Block for Current Control Loop
	Run in Open-Loop and Switch to Closed-Loop
	Model Configuration and Hardware Deployment
	Validate System
	Calculate Physical Motor Load in Target Hardware
	Compare Speed Controller Response During Simulation With Target Hardware Results
	Compare Current Controller Response During Simulation With Target Hardware Results

	Plant Modeling
	Creating Plant Model Using Motor Control Blockset
	Use PMSM Block and Motor Parameters to Design Plant Model
	Add Average-Value Inverter Block
	Create Motor Phase Current Sensing and Signal Conditioning Subsystem
	Create Position Sensing Subsystem
	Add Delay in Plant Model
	Integrate Blocks and Subsystems

	How to Use Field Oriented Control Autotuner Block
	Field Oriented Control Autotuner Block
	Connect Autotuner to Existing Model
	Specify Controller Parameters and Tuning Goals
	Set Experiment Parameters
	Run Model and Initiate Tuning Experiment
	Stop Experiment and Examine Tuned Gains
	Update the PI Controllers with Tuned Gains and Validate the Performance

	Hardware Troubleshooting
	Check ADC Inputs
	Description
	Action

	Verify PWM Outputs
	Description
	Action

	Check Hardware Connections
	Description
	Action

	Test Algorithm Design
	Description
	Action

	Check Generated Code
	Description
	Action

